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ABSTRACT

The paper considers stochastically constrained nonlinear program-

ming problems. A penalty type method is suggested as a deterministic

surrogate. The penalty is constructed in terms of a "distanced

function between random variables,given in term of the O-divergence

functional (a generalization of the relative entropy). A duality theory

is developed in which a general relation between O-divergence and utility

functions is revealed, via the conjugate transform, and a new type of

certainty equivalent concept emerges. -' .

Key Words: Stochastic Programing, Penalty Functions, -divergence,

.0 Entropy, Conjugate Duality, Utility Functions, Certainty Equivalent.
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1. Introduction

In this paper, we consider mathematical programming problems with stochas-

tic constraints of the form:

(SP) inf{g0 (x): g(x,b) < 0}

in n Rk m

where x E i is the decision vector, go: In - I, g: x kI Rm  are

k
given functions and b e I is a random vector. A new penalty-type decision

theoretic approach to treat problem (SP) was introduced recently by Ben-Tal

[2]. In this approach, the stochastic program (SP) is replaced by an

unconstrained deterministic program:

(DP) inf {g0 (x) + p PE(x)}

where p > 0 is a penalty parameter, and PE is a penalty function for

violation of the constraints in the mean, i.e. PE(x) - 0 if E g(x,b) < 0 t

and PE(X) > 0 otherwise.

The special feature of this approach is the choice of the penalty

function P.' which is constructed in terms of the so-called

Kullback-Leibler relative entropy functional, (or divergence), widely

used in statistical information theory, [9], [10].

If I is the set of all generalized densities f of random vectors
k

kz E I with support T (all absolutely continuous with respect to a common

non-negative measure dt), and fb is a given density in Ik' of the random

* kvector b E Ik, then the relative entropy between the random vectors z (with

E denotes the expectation operator with respect to the random vector b.

I. o"- . . .. . . . . - " " * " - " • " "• " " "".".". .". .".. . .. ...- ".. . .-.. . . . . . . . . . . . .. -'.
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density f E D ) and b (with density fb) is
k b

I(f,f) = f(t) log f(t) dt ; f E "
*b f W tf ak

T b

The penalty function PE is defined in [2 ] as the following infinite

dimensional optimization problem:

- E inf f(t) log fb(t ) . g(xt)f(t)dt < (1.1)

k T T

and is accordingly called entropic penalty.

Many attractive properties of the entropic penalty and of the induced

deterministic program (DP) are obtained using a fundamental dual representation

of P derived in [2]:
E

P(X) = sup {-log E e- g(xb)

y >0

In particular, the dual expression of P is used to express the

deterministic problem (DP) as a saddle function problem, and for the important

special case of problems with stochastic right hand side:

(SP-RHS) inf(go(x): g(x) > b}

it is shown there, that the primal entropic penalty program (DP) generates

a dual problem which consists of maximizing the certainty equivalent of the

classical Lagrangian dual function of (SP):

ST
hb(Y) := inf (Lb(X,y) = g0 (x) + vTg(xb)}

x

i.e., the dual problem is:

S

0O
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max u'Eu (h b(y))
y>O

where u is an exponential utility function and u is the inverse of u.

This interesting dual relationship between the minimization of the classical

relative entropy functional and the maximization of expected utility, give

rise to the following natural questions:

(1) Does such duality results hold for arbitrary utilities, (not just

exponential)?

(2) Assuming (1) holds, what is the corresponding entropy-type functional

involved in defining an appropriate penalty function?

(3) How does the new entropy-type penalty relate to utility functions

and is it appropriate to treat stochastic programs (SP)?

In this paper, we aim at generalizing and unifying the results derived

in [2], and provide satisfactory answers to the above questions. The key to

the generalization is the concept of O-divergence, I, introduced by

Csizar [7]. It includes most of the important entropy type functionals used

in mathematical statistics. Its legitimacy as a measure of "distance"

between probability distributions as well as some of its basic properties

needed in this paper are discussed in Section 2. Adopting this concept here,

a generalized penalty function P is defined by replacing in (1.1) the classi-

* . cal divergence I (based on the special choice *(t) - t log t) with I$.

In terms of the O-entropic penalty P, the stochastic program (SP)

is replaced by a deterministic program:

(DP)¢ inf {g0 (x) + P .
x

* The properties of ? and its appropriateness in treating stochastic programs

4.

. - . - . - . - - ' . - ' .'* . . . . ..*.- " .* * .-' * "
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(SP) by its deterministic surrogate (DP)$ is discussed in Section 5.

A crucial step in studying these properties is the derivation of a simple

dual representation of P, see Section 3. This representation also enables

us to associate in a natural way, the kernel information function $ with

a utility function u, via the conjugate function 0* of 0. In terms of

this utility function, we introduce in Section 4 a new type of certainty

equivalent concept, possessing for arbitrary utilities many of the properties

that the classical certainty equivalent possesses only for exponential

utilities. A similar type of such "new certainty equivalent" was first

introduced by the authors in [3] from intuitive economic considerations.

In the last section, we treat stochastic right hand side problems, and

generalize the results in [2] on the duality between the primal

entropic penalty program (DP), and the problem of maximizing the classical

certainty equivalent of the Lagrangian dual function hb(y). It is shown

here that the dual problem associated with (DP), consists of maximizing

the new certainty equivalent of hb(y).

Finally, it is perhaps worthwhile to point out that many other problems

which appear in a variety of applications (see [8], [21], [221) fit the formalism

of the O-entropy problem, thus can benefit from the duality framework developed

in Section 3. This will be discussed elsewhere in a future paper.

2. The S-Divergence and the Induced O-Entropic Penalty

In this section, we discuss some properties of the O-divergence in terms

of which the O-entropic penalty is constructed. Let T be a locally compact

Hausdorff space, F the a-field of Borel subsets of T, dt a nonnegative

regular Borel measure (rBm) on T, and M(T) the linear space of real-valued

finite rBm's on T.

., .
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Let W and w2 be two probability measures which are assumed ab-

solutely continuous with respect to dt, we denote the density (Radon-
dU i

Nikodym derivative) of Pi by: fi(t) --

Assume here and henceforth in this paper that 0: X+ I is a

continuous proper convex function, so dom := {t: 0(t) < } and

0(t) > - Vt E I . The class of such functions will be denoted by $.

For a given function E D, the 0-divergence of the distributions

W1 and p2 is defined in terms of their densities as:

I (flf ) :W f f2 (t) dt (2.1)

The concept of O-divergence (or 0-relative entropy) has been introduced by

Csiszar[6] as a generalization of many other entropy-type functionals, widely

used in statistical information theory (see, e.g. [4],[9J,[15],[21]:

Kernel function The -divergence Name/Source

P(t) tlogt-t+l I (fl,f 2) = fl(t) fo t) dt (Kullback-Leibler [10])
T

2
1 2 (fl(t)-f 2 (t))

) (l-t) I(flf 2) - T f2(t) dt (Kagan [91)

(t) = -- Ut-i 
+ 1 1 2l'f c-l- f1 (t)f2(t) dt + (c-order divergence [15])

T
at>0, ct 1const.

) -) I(f,f 2 ) _ 2 (f-/2) dt (Hellinger distance [4 ])
T

( - I-ti (fl,f 2) = Ifl(t)-f 2 (t)idt (Variation distance [21])

T

TA3.,E 2.1. Cxc'ples of *-divcrgcnc

9[
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We assume here, and henceforth that (l) = 0 and lim 0(t) =(0),

t00
0,) = O 0(a) - l (a = a lim (t) , a E (0,+-). All the examples

E£+ t

in Table 2.1 satisfy these requirements.

The following result follows directly from £7, Lemma 1.1), it explains

why I can be used as a measure of distance between two random variables.

Proposition 2.1 The O-divergence functional (2.1) is well defined and

non-negative. It is equal to zero if and only if fl = f2 (a.e.)

The *-divergence also possesses an important convexity property:

Proposition 2.2 I is convex in each of its arguments.

Proof: The convexity of is equivalent (for t > 0) to that of

o( t ) : = t o ( I )

and

I (ff) -,(fof 00 f f 2t t dt . (2.2)

0 T

Now, the convexity of I in f is obvious, while its convexity

in f2 follows from (2.2).

Adopting the concept of O-divergence and following the definition

of the entropic penalty PE given in (1.1), we define now a generalized

penalty function P (.) called O-entropic penalty as

(P) Pf(x) = n pfb(t) ff(t)l dt: f g(x,t)f(t)dt . 0

k T T

.Z-"
- * . . . . .. " " " . .+oi'. " ,,.
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Observe that we have built into the definition of P a penalty parameter

P > 0. This parameter enables the decision-maker to control the size of the

penalty so as to reflect his subjective attitude towards constraints viola-

tions. Note that, by choosing c(t) = t log t, one obtains P P PE where

PE is the usual entropic penalty (see eg. (1.1)). In terms of the O-entropic

penalty, a surrogate for the stochastic primal (SP) will be the deterministic

primal problem:

(DP) inf {g0 (x) + PW(x)}

xe n

Properties of the -entropic penalty and of the induced deterministic program

(DP) will be derived via the duality framework developed in the next section.

3. Duality Theory for the -Entropic Penalty Problem

Let X and X be real vector spaces, and <.,'> a bilinear function

defined on pairs (x,x*), x E X, x* c X . Let X and X be equipped

with locally convex Hausdorff topologies, compatible with the bilinear form,

so that every element of one space can be identified with a continuous linear

*
functional on the other. In this case X and X are called paired

spaces and < , > is the pairing. For further details, see (4].

Now let X and Y be real vector spaces, A: X - Y a linear operator,

h: X - I a convex function with dom h = S and g: y - I a concave function

with dom g = Q. Consider the primal problem:

(A) inf (h(x)-g(Ax): x E S, Ax E Q}

S

the Fenchel-Rockafellar duality theory f20] associates with (A) the dual

problem:

* or ;(t) t log t-t+1 (as in Table 2.1) which is the normalized form, i.e.

-(U) =0
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(B) sup tg*(x*) - h*(A x*) x* E Q , A x* E S*}

where A*: Y - X is the adjoint of A, X and Y are the spaces

paired with X and Y with the pairing <*,>x, <.,.> respectively, and
y

h* ,g are the usual convex and concave conjugates of h and g, i.e.:

h*(') = sup {<x,> x-h(x)}
xES

g*() = inf {<y,.> y-g(y)}

yEQ

Further, S dom h* and Q = dom g*

The value of the -entropic penalty at a given point x is obtained as

the solution of the infinite dimensional convex optimization problem:

(P) inff pffb(t) ft) dt (p > 0)
fEl k T ft)

subject toJ gi(x,t) f(t) dt < 0 i = 1, .... m (3.1)

T

We set problem (P) in the format of the convex program (A) as follows:

Consider the linear operator B: M(T) -
m  given by

gl(x,t)dll

T

gm (x,t)d i

T

and the integral functional

4f b 4f(01' dt if 4i is an absolutely
{J ) bf t continuous 2Bm, and

=M : I(~ f - ~
dt

otherwise

Let T be the linear function w - f dW Then problem (P) can be

written as:
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inf {J(p): B < 0 , M4 = 1}

By propositicn 2.2, J is a convex functional, and it is easily seen

that (P) corresponds to the convex program (A) with:

S dom J, X := M(T), y = i2, h() := J(-) A : T

a := { Q := {z 6 : z < a} and

-g(-) : ('IQ)(= indicator of Q) . Elements x EY are given as:
x (Y,l+,n_).

Substituting these in the associate dual (B), we have:

* Lemma 3.1. The dual problem of (P) is given by

(D) sup sup {n - h*(n-ytg(x,t)) (3.2)
M nER

E)+ -_ if x* < 0

Proof: A simple computation shows that g*(x*) = (3.3)

-0 otherwise

so Q* = {x* = (yr+,)t: x* < O} . Further, we note that the adjoints of

A and T are respectively:

A IRxR 2-C(T): A x -B y+T i+-T _--y g(x,t) +T n+-T n- (3.4)

T : C(T) T s-s (A constant function in C(T)) (3.5)

where C(T) is the linear space of continuous function on T, usually

identified with the dual space of M(T). Therefore, substituting (3.3), (3.4)

and (3.5) in problem (B) with rl := l+- n_ and replacing y by -y,

we obtain the desired result.

In nroblem (D), the dual objective function is expressed in terms of

h*, which here is the conjugate of the integral functional J(). The

0
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conjugate of J is computed in the following result.

Lemma 3.2. Let e D, the conjugate J C(T) I 1 of J is given by:

r pfW(t) f(t) dt if f(t) =-u , p abs. continuous (dt)

3 (f) - (3.6)

,O o otherwise

Proof: Let C(T) be the space of all continuous functions x: T I K

with the norm

!!xii - max Ix(t)l
tET

Consider the integral functional I: C(T) -I I given by:

I(x) :f pfb(t) 0 (-) dt : F(t,x) dt

T T

The conjugate of I is then by definition:

I (N) - sup f xdvi - f F(t,x)dt: x E C(T)}

T T

Using general results on the computation of I* (see e.g. (181, Theorem A

and Corollary 4.A, pp. 452-454) it is easy to verify that for a given

t € and fb Dk' F(t,x) - pfb(t) *( t)) satisfies the assumptions

required there, and so, we have

F (t, d) if p 6 M(T) is abs. continuous (dt)

* (3.7)I (vi) =,(3 7

0 otherwise

where F (t,x*) is the conjugate of F(t,') at x* (for fixed t).

Here F (c,x*) sup (xx*-Pfb(t)WO()} Pfb(t) sup ixbx) * ( x. (3.8)
Sb x b ( P



Since e P, hence continuous, we have - P* and thus from (3.8):

F (t,x*) k{bt=x> (3.9)
00 otherwise

Setting x(t) :- f(t), and combining (3.7)-(3.9), we have obtained

I (.i) = ( )

Moreover, by the continuity and convexity of I, we have also:

*(f **
J (f I (f) 1 (f)

and S*- dom J C(T), and thus (3.6) is proved.

Combining the results in Lemmas 3.1, 3.2, we have actually proven

that the dual problem of (P) is given by:

(D) sup_ sup - f pf (t)1* p dt} (3.10)
yE Tier T I

a finite dimensional concave program involving only nonnegativity constraints.

Duality results concerning the pair of problems (P) - (D) will now

follow.

Theorem 3.1. (a) If (P) is feasible, then inf(P) is attained and

min(P) = sup(D)

Moreover, if there exists a density f c Dk satisfying the constraints (3.1)

strictly, then sup (D) is attained and

min(P) = max(D)
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(b) Under the additional assumption: lim 0*(t) < then:

sup(D) < - if and only if (P) is feasible

Proof: (a) The result follows immediately from Rockafellar [20] (Theorems

3,4, pp. 178-179). Indeed, the fact that the dual (D) given in (3.10),has

3nly non-negativity constraints y > 0, it safisfies the strongest constraint

qualification, implying that (D) is stably set, hence the first part of

conclusion (a) follows. Also, since f c Ik satisfies the constraints (3.1)

strictly, (i.e., the familiar slater regularity condition) then (P) is stably

set and thus the second part of (a) is proved.

(b) The implication (P) feasible -> sup (D) < - follows trivially

from weak duality (without any assumption on the problem (P)). We prove

now the reverse implication:

(P) infeasible => sup(D) co

The feasible set of (P) is

fBv < 0, T. - 1, u nonnegativel (3.11)

Using a duality theorem for linear program in vector spaces (see e.g.

e. [13], Theorem 3.13.8, p. 68), it follows that (3.11) is infeasible if and only

if the system

* * m
-B y + T n< 0, n > 0, y E+ (3.12)

* is feasible. (B ,T are as defined in (3.4) and (3.5) respectively.)

Thus the feasibility of (3.12) implies that:

yt
> 0, q > 0: - y g (x,t) < 0, r > 0 (3.13)
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By taking (y,n) + from (3.13), and choosing y - My, n Mn

with M> 0, the dual (D) (see eq. (3.10)) becomes:

sup(D) > sup m - pfb(t) (M( y  (x't)))dtY (3.14)
M>O p

T

and since lUm ( (t) <, the sup in (3.14) can be made arbitrary large.
t- C [

4. A Representation of the O-Penalty in Terms of a New Certainty Equivalent

Throughout the rest of this paper we deal with the class of function

E 0 which are strictly convex, essentially smooth(*) (see E17], Section

6 26), and with 0'(1) - 0. We denote this class by 0i"

Recall that a dual representation of the O-entropic penalty is given

by (3.10) as:

* t
P (x) - sup sup {n - pf bt) *(-Y (xt))dO. (4.1)

y>O KEI T

Let us introduce the utility function u as:

u(t):- (-t) (4.2)

Then u is a strictly concave essentially smooth function (see [17],

Theorem 26.3) with u(0) = 0, u'(0) - 1 (this is implied by 0(l) -0,

0'(1) =0). Table 4.1 gives the utility functions corresponding to the

kernels 0 given in Table 2.1.

i* (*) All functions given in Examples 1-4 from Table 2.1 are indeed essentially
smooth.
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Kernel function Utility function
W(x) u(t)

x log x-x+1 1 - e

2 ( -x) t 2

- p )( 1  bx) 1 ( (t>-4

n i t aera o ws ta ) can be al written as:

P x - sup -sup i + 1- i - (1b)(n)} (443)

pGO nER

For a random variable X, let us define the quantity:

S (X):- p sup in + Eu(i - ni)} .(4.5)

P nEIR

The latter was introduced by the authors in [3J (with p-l), and termed the

- -new certainty equivalent of X.

From (4.4) and (4.5) P is given by:

P (x) - sup S { (ytg(xb)), (4.6)

y>O E

so the properties of P are directly related to those of the new-certainty

00

e a T of S .
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Lemma 4.1 Let p > 0 be fixed. For any random variable X and a

constant w 6 R:

(a) S (w) -w

(b) S p(X) < (x)

c) S (X+w) - S x) +w.
p p

Proof: (a) By definition, Sp(w) - p sup {n + u(p-n)}, equating the"" nEM

derivative of the supremand to zero we obtain u'(p- n) - 1, hence
p

since u'(0) - 1 and u' is strictly decreasing (as a derivative of the

. strictly concave function u), the supremum is attained at n and
p

its value is then S(w) - p OwW
p

(b) Since u is strictly concave, u(x) < x for all x € 0 hence

S (X) - P sup {in + Eu(I - nl < P sup in + E(- - - (X).
P nER nEIR

(c) By definition:

s(X +w) - p sup in + Eu(-- n)}p nE:R
Jw

hence with n - n - - ,one obtains
p

S (X+w) - p sup {n + H + Eu(- - )} - w + S CX).
p nR p p p0nEIER 13

The additivins property given in Lemma 4.1 (c) will be of fundamental

importance in deriving the duality results of the next section. Note that

property (b) in the lena corresponds to risk aversion (concave utility).

I

4

.-- - - -, . ,. - .. . .. .. - . . . - '. . • • .. :. - - . , :- . . - " '
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Example 4.1 [Exponential utility]

Let O(x) - x log x-x+1, then E " Its conjugate is (t)- at- 1,

so by (4.2), the induced utility is u(t) - - e- t. The new certainty

equivalent is then

S (X) -plog E eX/P
p

Here the new certainty equivalent coincides with the classical certainty

equivalent corresponding to the utility function a(t) - 1 -e- t/p  i.e.,

s Cx) - u1 EuX.
p

The parameter p is exactly the reciprocal of the Arrow-Pratt risk aversion

indicator (-u"/u'), see [14].

Example 4.2 [Quadratic utility]

Let O(x) (x- 1) then u(t) n t - and

S MX- 1. a2
p 2

where u is the mean of X and a2  the variance.

Example 4.1 showed that, for exponential utilities, l/p is exactly

the classical Arrow-Pratt risk indicator. This role of 1/p as a measure

of risk, is further explored in the next two results, which incidently

provide a generalization of Theorems 1 and 2 derived in Bamberg and

Spremann [1] (proved there for the case of exponential utilities only).

Lemma 4.3(a) below will be also of particular importance in deriving the

duality results of Section 6.

o

.0 I" .L Ii . , i - :-- ~ i,  ,:- - - " - - - " "" - '  <

'-' - ' l 'i&--
' -

- n -- m % =A j*~ A' -..- " " --- -
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Lemma 4.2 lim S (X) - E(X) (Risk Neutrality].

Proof: Let a:- - and define
p

v(a):- sup {n + Eu(aX-n)} (4.7)
hER

Equating the derivative of the supremand to zero we obtain:

Eu'(aX-fn) -1

Since u' is strictly increasing, by the implicit theorem we have

v() - n(M) + Eu(MX - n(m)), (4.8)

where n(a) is the unique solution of

Eu'(aX - n(a)) 1 . (4.9)

From (4.9), u'(-n(0)) 1 . and then n(0) - 0.
1

In terms of v(a), we have with a:- -

p

S () - v(a) (4.10)
p a

Thus, lim S (W)- lm 0
p 0

and by L'Hopital rule we get:

liza S (X) -jim V(a - li Cn'(a) + E((X- ' (a))u' (aX- n(a)) - E(X).
P0p W I.. 1 a-0

Lemma 4.3 Let X be a random variable with infimum support Y-L > -"

and with supremum support K. Then,

-. . . *. .. .... . ... .. .. .
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(a) VE>O lm S ( < XL +E.p-*O P -

(b) If, in addition, u is strictly increasing we have

lir S (X) - XL  [Risk averse].
p-*.0 p X

Proof: (a) A (one dimensional) special case of problem (P) is:

XR

(P)1  inf {pI,(f,fy): g(t)f(t)dt < O}
fED 1  1

Consider now the problem (PE) obtained from (P)1 with g(t):-t-XL-E,

namely
XR

(P inf {pI (f,fx): tf(t)dt <XL + E}
f ED

XL

The dual of (P obtained from (4.6) is:

sup S (y(X- xL

and using the additivity of Sp (Lemma 4.1(c)) and (4.7), it becomes:

(D) sup {S (yX) -y(XL + Q}
y>o P )yX+)

Problem (P is clearly feasible YE > 0, and so from weak duality

between the pair (P - (D ), we have:

4E

(PE) feasible -> sup(D E) < cc (4.11)

Hence,

> sup(D ) > lm ys(YX) - (XL + E)
L* Y

-" ., . . . " " " '.. . . . .", , °",".
°  

'

'?'l.b i-i[:i-ill. " ""' "" . ." . ..""' 
" .- .? ' l '.

" . . .-.--. • "-"-.. -.'" . .
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i.e., S(X)(.2

sSp (yx)C
lilm Y <_L+E(.2

C 3 yx)
Now, it is easily verified that Y - S/yX), hence (a) follows from

(4.12).

(b). > 0 aX-n > XL - n and since u is assumed strictly

increasing we have:

n +Eu(aX- n) > n +u(aXL - n)

so

S(x) > p.sup (n + u(C- n)p nhER

The latter supremum is easily computed to be XL and so

sp (x) xL

This combined with (a), proves (b). C

5. Properties of P and a Min-Max Representation of (DP)

In this section we derive the properties of P and discuss its

appropriateness in treating the stochastic program (SP), using (DP) .

Theorem 5.1 For any 0 E 01, the O-entropic penalty function P

satisfies:

(i) 0 if Eg(x,b) < 0

pos if Eg(x,b) 0

........... . .



20

(ii) Under the additional assumption (Al): lm m (t) <

P%(x) if for some i gi(x):- inf gi(x,b) > 0.
bET

Proof: (i) Let Q(x,y):- S (ytg(x,b)) then
p

P (x) - sup Q(x,y) > Q(x,0) - S (0) - 0 (5.1)
y~.0  p

The later equality comes from Lemma 4.1(a).

Now using Lemmna 4.1(b) we have:

Q(x,y) < ytEg(xb)

with equality only for y - 0 and so

P (x) = sup Q(x,y) I sup ytEg(x,b)
y>O y1_0

If Egx,b) < 0, the last inequality shows that P (x) < 0 which together

with (5.1) proves the first part of (i).

Assume now that for some

i E Cf,m], Egi(x,b) > 0. (5.2)

Let Qi(x,yi):=Q(x,0,...,yi,...,0) Sp (Yigi(x,b)).

Then, we have Qi(xO) - Sp (0) - 0.

Moreover,

y g(x,b)
Sp(yigi(x,b)) ;-sup {n + Eu( gi) (5.3)

nEF.
Yi

Since 0 E 01, then the function *x (yi,n):=Eu'( p gi(x,b)- n) is

continuously differentiable on R x R and - x(Yn) - -Eu"(- gi(x,b)-7) > 0.
+ dn ,p i ~xb-~

* This assumption holds for Examples I (with a < 1), 2 and 4 in Table 4.1

@



21

Hence, by the Implicit Function Theorem, there exists a unique solution

n n(y to the equation *x(yi,n(yi)) - 1, and n(0) - 0. By the

definition of S(yigi(x,b)) in (5.3), as an unconstrained concave optimiza-

tion problem, an explicit expression of it is obtained by equating the

derivative of the supremand to zero, and therefore:

Yi(x,b )

Qi(x,yi) =nSp(yigi(xb) =p(n(y i ) +Eu(ii - (yi))(5.4)

where n(yi) is the unique solution of

x(Yi.n . (5.5)

Now, an easy computation shows that:

i(Y,yi) ] M Egi(x,b) -u'(-n (0)) ,
dyi i Yi-

but n(O) - 0 and u'(0) - 1, so we have under assumption (5.2):

d Qi(x,yi)] - Egi(x,b) > 0.

Therefore, there exist Yi > 0 (close enough to zero) such that

Qi(x,yi) > Qi(x,O) 0 (5.6)

Noting that

P (x) O sup Q(x,y) > sup Qi(x,yi) > Qi(x,yi) > 0,
0.Sy E inO~y € n - k -

and this proves the second part of (i).

. , . . . . . . -
V '~~~~~~.'.-.-..'''"" '' . ...- -'.' -. - :.." " ' .'. - - . .m, ,... &d ,a =-"..:...... . . . . .,,m, ,,,= -,- ,._i . .,
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(ii) Let gi(x) > 0 for some i. The latter means that problem (P)

(see (3.1)) is infeasible, hence under assumption (Al), invoking Theorem

3.1(b), this implies that P (x) M 0

The first part of the theorem demonstrates that P (x) is a penalty

function for violation of the constraints in the mean. The second part

shows that P has the desirable property of excluding solutions which

are not feasible in (SP), for any realization of b, i.e., for x which

is infeasible with probability 1, P (x) - 0.

Therefore, a suitable deterministic surrogate problem for (SP) is

(DP) inf {g0 (x) + P W(x)}(D)€xEIR n

From the additivity of he new certainty equivalent (Le-a 4.1(c))

inf {go(x) + P x)} - inf sup S (go(X) + ytg(x,b))

x x Y?_0

hence (DP) can be written as a minimax problem:

(DP)o inf sup S (Lb(xy))(5.7)
x y.!0

where L(x,y) - g(x) + ytg(xb) is the classical Lagrangian correspond-

ing the the original problem (SP). This result generalizes Theorem 2 of (2],

We close this section by giving an explicit expression of P for the

familiar chance constraints problem [6].

Example 5.1: Consider the well known chance constrained program

(CC) inf (g(X): Pr {g(x) > b} < a} (5.8)

wLich is a special case of the deterministic program
inf (go(x) : Eg (x, b) < 0} (5.9)

." * For simplicity we will treat here only the case of a single constraint,

*[' i.e., g: Rn -. R.
0o

* . . . * .* .**.*
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by choosing:

1--a if g(x) > b

g(x,b) a E (0,1) (5.10)

--a if g(x) < b

Using the dual representation of P given in (4.4) we have:

P (x) - sup p sup (n + f (t)u(l g(x,t) - n)dt} (5.11)
SO<yE., nEI -b p

Recalling from (5.10) that here:

i-a if g(x) > t

g(x,t) E (0,i)

-a otherwise

we get from (5.11) in term of the cummulative distribution function F()

of b: (denoting F:-F(g(x))):

P (x) - sup p sup {n + Fu(Y-a) - n) + (1-F)u(- RZ-n)}. (5.12)
y> O nE3R p p

Let us define n:= _ _ n, then (5.12) becomes
p

P (X) - p sup { - r +(t-E)u(i) + supt- + Fu(A + )} (5.13)Pp pR y>0 p

The inner supremum in (5.13) is computed first; by simple calculus, the

maximizing y is y given by:

( -a )- ; if > U( )

Yi"

t 0 otherwise.

(The existence of (u')- I is guaranteed, since u' is a derivative of a

strictly concave function.)

.- ... * • . . * V •* . 1
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Substituting y in (5.13) yields:

p p {(1-F)u(n) - (-1)} + (F) oi e (U5.14nER
P() W (5.14)

0 otherwise

where (t):- -t.{a (u')-l -1 )- u((u')-l( ))} . (5.15)
t t t

The latter expression can be simplified by observing that

u* (x*) inf {xx* -u(x)} - x*(u') -(x) - u((u)-l (x*) (5.16)
x

(i.e., the Legendre Transform of u), but by (4.2) we know that

u(x) - -¢*(-x), hence u*(x*) - -¢(x*)

using the latter in (5.16) at the point x* -a , (5.15) reduces to the
t

simple expression:

( t () . (5.17)

It remains to compute

up {(l-F)u(;) - a(-a)} . (5.18)
nEIR

Equating the derivative of the supremand to zero, we get the optimal

n from:

1-a

1-* 1-

which by (5.14) must satisfy > u(n*) = ; then substituting
in (5.18), after some algebra, we finally get from (5.14):

p.{F(g(x))O(F ax)) + (l-F(g(x))Oi(g~) } if F(g(x))>a
F~+ x) '-gx)} fFg))

P(x) - (5.19)

0 if F(g(x))< a

4 i.e. Prig(x)_b} <j a
.. . . . . . . . .
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1-ct
Noce that the function h(t):-t( ' + (l-t)o( j- ) in term of which

P is expressed, is convex and increasing 0 < a < t < 1 and h(a) 0,

so by this and (5.19), PW(x) - h (max{a,F(g(x)}). It follows that if

F(g(x)) is convex so is P . (Compare these results with [21.)

6. The Dual Problem of CDP) for Right-Handside Programs

In this section we treat the special case of the general problem (SP):

(SP) inf {g0 (x): gi(x) > bi i ,

which is obtained from (SP) by setting g(x,b):-b-g(x).

The penalty function P is given here by:

P x) - sup S (yt(b-g(x)))
.- y> p

pt

However, by the additivity of S, since y tg(x) is not random, we can

write P as:

P (x) - sup {w(y) - ytg(x)}

yi_

where

w(y):- p sup (n + Eu(X - ) (6.1)
nEI

The corresponding deterministic primal (DP, -RHS): inf{g +P (x)) is then:
x

(DP. -RHS) inf sup K(x,y)
x y>O

with

K(x,y):- go(x) + w(y) - y g(x) (6.2)

m
Assume now, that g0 (x) is convex, and that (g i(x)} are concaveI i-lar cncv

• - - <, - <<-. : -,'- - :. , i K <
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functions, so (SP-RHS) is a convex program. Also P (x) becomes convex

and so (DP - _iS) is a convex program.

We define the dual problem corresponding to (DP - RHS) by:

(DD -RHS): sup inf K(x,y)

yLo

The main result of this section is a strong duality relation between the
Spair (DP- RH$) and (DD -BS).

Theorem 6.1 Let (SP-EHS) be a convex stochastic program and consider the

corresponding deterministic program (DP- RRS).
If the following condition holds:

*o! x E JR such that gi W b V i E (6.3)

where b i denote the inflnum support of bi.

Then:

inf (DP - RHS) - max(DD- RHS) (6.4)

Proof: Since go(x) is convex and {g xil are concave then K(*,y)

. - given in (6.2) is convex for every y > 0.

iNow the function w(.) given in (6.1) can be rewritten as:

0- w(y) - inf F(n,y),

where F: R x - JR is defined by F(n,y) - -p - pEu( - n);
psince u is concave it follows from [19], Theorem 1 that F(n,y) is

(jointly) convex, hence w(y) is concave and therefore K(x,.) is concave.

By a result in [16], a sufficient condition for the validity of (6.4)

for a general convex-concave saddle function K(x,y) is:

a Yo 0 such that y0VyK(x,y) > 0 (x R J~n , y > 0) (6.5)

0"u

f ":" "" " " " . . .. . .. . ...i..i.. . ..': i. .'. " 7: ." : ":i':i . ..- >: -
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With analogous proof to the one given in Theorem 5.1 (eqs. (5.4)-

(5.5), w(y) is expressed as

w(y) p(n(y) + Eu( y  - n(y))

where n(y) is obtained from Eu'(A - n(y)) -1.
p.-

Thus, Vw(y) - E(bu'( L - n)), hence (6.5) is here:
p

Y >0 such that yt{E(bu'(A - n(y)) - g(x))} > 0
0- p

Yx E Rm, y > 0.

The later is certainly satisfied if:

3 x, y > 0 such that Vw(y) = E(bu'(Y± - n(y)) < g(x) (6.6)
p

To show that condition (6.3) implies (6.6) it suffices to prove that:

inf w(y) < b_ V i 1.i... m (6. 7

y2.0 i

For all i E [l,m], let

biyi
wi(yi):nw(O,...,Yi... 0) - p sup {n + Eu( - n)

Noting that

inf a w(y) < inf a wi(Y i)  viO,,ElRm  Yi -0<_yiEIR Yi"

to prove (6.7) it suffices to prove that

inf wi(yi) _ (6.8)

Now wi(y) is concave and w (0) - 0, hence by the gradient inequality

o - w(0) < wi(yi) - yjwi(yi)

Y2
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and thus

w(yi)
lir wI(yi) < lir (6.9)

y + c y j - Y i

But w' is a derivative of a strictly concave function and thus is

i

strictly decreasing hence inf wI(yi) - lim wj(yi).
Yi>0  Yi ).

Moreover, using (4.7) we have the relation:

--- w i ) "Yi V(CL)

Yi

with a:- - (p 0), then from (6.9) and Lemma 4.3(a) we get the
p

desired result (6.8).

The dual problem (DD RHS) is given by

sup inf K(x,y)." yj_0 x

To get a full meaning of this dual we fist prove:

Le-a 6.1 inf Sp(Lb(xb)) - S (inf L(x,y)).

x 2

Proof:

Sp(i n f n (x 'y ) ) - S p (y  + in f (g 0 W - y g)x)))
x p

= Sp (ytb) +inf{go(X) -ytg(x)} [by Le-a 4.1(c)]
I

. inf {S (y%) + go(X) - ytg(x)}
x p0

_0" - inf {S (yth + gW(X) - ytg(x)} [by Lema 4.1(c)]
x

- inf {Sp(Lb(Xy))}.

.,7

IL~i1

", ' ', ," ' ""S ,.__ _ ' , ,. ''-, ""*'' -2 ,"_ ' -. ' - -. ' - _ ": , t . " i ,-+. . - " " ' . .
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Now K(x,y) given in (6.2) can be written, using again the

additivity property of Sp (Lemma 4.1(c)) as:

K(x,y) =S (Lb(xy))

Hence, by Lemma 6.1, the dual problem (DD -RHS) is

(DD -RHS) sup S (nf Lb(xy))Y>o x

Thus we have shown that while in the deterministic case, the Lagrangian

dual of (SP) is the concave program: sup inf L(xy), in the stochastic
yiO x

case, the dual program (DD RHS) consists of maximizing the new certainty

of the Lagrangian dual function.

This result generalizes, to arbitrary utilities, a result in [2,

Theorem 4], proved for the exponential utility.

_

a .

LI

a2

2t* . .. ~
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